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1. Introduction.

Achieving high affinity for a protein target is a necessary and essential requirement for drug design.   
While formally analytical expressions, based on statistical mechanics, exist that calculate binding free 
energies, it is highly difficult to compute binding free energies in practice1.   It is non-trival to capture 
solvation effects, especially the effect is due to individual water molecules rather than the bulk 
properties of water.   These granular effects are unavoidable; a survey of structures in the PDB shows 
each ligand-protein complex has about 4.6 ligand-bound waters2.   Furthermore, water not only 
stabilizes ligand interactions but plays a biological role in dictating specificity in [REF].

It is not surprising that modeling water raises such complications.  The first issue is chosing an adequate 
representation.  There are continuum solvent models where water is represented as homogeneous 
dielectric3-6.  Other models include explicit water molecules7-10.  Even more sophisticated models have a 
quantum representation of water molecules.    Water is modeled for industrial applications over a broad 
range of temperatures and pressures, but even quantum mechanical treatments of water have difficulty 
reproducing all properties of water11-12.

In drug design water complicates the process of finding poses and calculating binding affinity.  At the hit 
identification stage, via virtual screening, crystal structures of the target can include several 
crystallographic waters and the modeller must decide which waters, if any, to retain for the docking 
calculation.  A broader issue is that solvation is often neglected in docking scoring functions and that can 
skew scoring results.  Once a lead or leads are identified, and x-ray structures are available for 
optimization, water molecules may mediate contacts between the ligand and protein target.  In that 
case, it is unclear if displacing the water molecule(s) will improve or deteriorate binding affinity.  These 
are two central questions to dealing with water molecules in drug design.  

Whether displacing a given structural water will improve binding depends on the balance between the 
enthalpy of contacts of the water molecule and the entropy change due to transferring the water to bulk 
solvent.   Dunitz13 estimated ~ 2kcal/mol net effect.  However, the contribution of individual waters is 
highly dependent on the environment 



There are examples where it helps, while  in some cases it does not .  Mikol et al14 found that displacing 
a water molecule can lower binding affinity.  

In this review we address how to deal with bulk solvent for docking calculations, the issue of which 
water molecules to keep in docking calculations and which waters to displace during lead optimization.  
The discussion starts with representations of water models.  

2. Representations of water

2.1 Continuum dielectric representations 

In classical electrostatics, it is possible to calculate the polar contribution to solvation for a charged 
species by representing the solvent as a continuum dielectric15.  In the case of macromolecules, there 
are usually ions in solution that can be incorporated into the model via the Poisson-Boltzamann 
equation16:
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Where  e represents the charge of an electron, z corresponds to the ionization state of each ion (for 
example, z=1 for Na+ while z=2 for Mg2+), n∞ is the concentration of position ions when the potential is 
zero.  D corresponds to the dielectric constant of the ionic solution, k represents boltzman’s constant, 
and T is the temperature.  This equation can be linearized, in the case of small electrostatic potential, to 
yield the linearized Poisson-Boltzmann equation:
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Delphi[REF],  APBS [REF], UHBD [REF], calculate numerical solutions to these equations for a given 
biomolecule.  This is a completely appropriate treatment for bulk properties because the solvent is a 
polarizable dielectric.  However, it can be computationally costly and thus motivated a more 
approximate, but much faster approach: the Generalized Born treatment.

Basically, the generalized Born treatment approximates the Poisson-Boltzmann equation with a fairly 
high accuracy (see for example Edinger et al6 and Tsui et al5 and references therein ).  The polar 
contribution to solvation free energy is given by3:
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Where qi and qj are partial charges, e is the dielectric constant for water and fGB is defined as:
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Where rij is the interactomic distance between atoms i and j; Ri and Rj denote effective Born radii for 
their corresponding atoms.  This approximation has roots Born’s analytical expression for the energy of 
a charged ion in a dielectric17:
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The expression is not valid for an irregular shape.  Given an irregular shape, the Born radius for an atom 
corresponds to the value of R that when plugged into equation 5 would yield the correct solvation 
energy.  

Inhomogeneous continuum water model is a different way of calculating the polar contribution to 
solvation of ligands and proteins.  It is based radial distribution functions of the solvent.  What is 
different about this method from the methods above is that the radial distribution functions for a given 
protein are calculated via molecular dynamics simulations. [FURTHER DISCUSS]

2.2  Explicit water models

Bulk solvent representations may not capture granular effects of water e.g. water mediated contacts 
and hydrogen bonding directionality [refs].  To address these issues, it is possible to employ an explicit 
solvent model where the oxygen and hydrogen atoms are explicitly included.  The TIP3P model has a 
partial charge on the oxygen atom, a partial charge on each hydrogen and a van der Waals center at the 
oxygen [REF].  Another 3 point model is the SPC and SPC/E models. While these three models use 3-
points to describe water, they yield different diffusion coefficients and radial distribution functions[REF].  
The TIP4P model also has charges at the atomic centers but the van der waals center is displaced from 
the oxygen by [FILL-IN].  TIP5P waters have charge points at the position of the oxygen lone pairs [REF].  

3. Water in virtual screening calculations

3.1 how much does including waters affect docking calculations?

Often, preparing a protein for a virtual screening calculation includes removal of all crystallographic 
waters from the binding site.  Exceptions are made if, for example, there is some evidence suggesting a 
water is tightly bound to the protein and is effectively part of the protein structure.  Without this 
information, it is difficult to justify keeping one or a subset of water molecules.  Docking into all 
permutations of water arrangements can lead to a large, and impractical, number of possibilities.  This 
raises the question of the trade -off between accuracy and the level of sophistication employed to 
account for these water molecules in docking calculations.  The concern is not merely for the virtual 
screening stage, but rather for the effect on the overall drug design effort.  



Huang and Shoichet18 found that removing all crystallographic waters did not deteriorate enrichment for 
12 of 24 target proteins.  In their work they switched waters on and off during the screening and 
compared enrichment results with the case where all waters were removed.  Nissink et al19 docked into 
two sets of proteins: 1) 55 protein structures with no mediating waters and 2) 40 protein structures with 
at least one mediating water.  Docking into structures with no mediating waters yielded a success rate of 
73% (1.5A ligand RMSD threshold).  That is, in 73% of the cases, the docked ligand pose was within 1.5A 
RMSD of the known crystallographic pose.  In cases where the crystal structure has mediating waters, 
but they were removed for this exercise, the success rate was 61% at the 1.5A ligand RMSD threshold.  
As the threshold increases the differences dissipate (81 vs 79% at 2.5A ligand RMSD threshold).  In 
another study using GOLD, including key crystallographic waters in the docking against influenza virus 
neuraminidase did not improve the docking poses with respect to the same exercise without waters.  In 
addition, Garcia-Sosa and Mancera20 noticed that including a tightly bound water adds further 
restrictions on the scaffolds that fit in the binding site and effectively reduce the chemical diversity of 
the scaffolds found in a de novo design study.  Naturally, that added restriction may be necessary if 
displacing the water will deter binding, but removing that restriction does not prevent other scaffolds 
that can meet this restriction from being found via docking.

Other studies show including key water molecules improves the docked poses.  For example, Roberts 
and Mancera21 found that including water in docking calculations improves the quality of docked poses.  
The success rate at a 2.0 A ligand RMSD threshold was 74.2% when including crystallographic waters 
versus 65.8% without them.   240 structures made up the test set.  Furthermore, including key waters in 
cross-docking calculations, where only waters consistently observed among the protein structures were 
included, also showed improvement in the quality of poses when compared to the same calculation 
without water molecules22.   The success rate at the 2.2A threshold almost doubled (38.40 vs 69.39%) 
due to including water molecules.  de Graaf et al23, in their docking studies against chrochrome P450 
and thymidine also found deterioration of poses in the absence of key water molecules.  Some of these 
effects may be circumstantial.  Hritz et al24 found that the effect of water was highly dependent on the 
conformation of cytochrome P450 2D6 and that it was not consistently an improvement.  Including 
protein flexibility in their docking calculations yielded results just as good as those including water on a 
static calculation.  Furthermore, using molecular dynamics simulations it was possible to capture an 
effect from the water on docking results, but the effect was not consistently an improvement over the 
water-less structure25.

While it is intuitive to use dock poses to capture the effect on accuracy from structural water molecules, 
a more practical metric to use is enrichment factor.  Unfortunately, that kind of study is far less 
common.  The work by Huang and Schoichet18 is an example showing what one might expect: in some 
cases there is no significant impact in enrichment of true binders.  However, this remains an open 
question.  

3.2 Implicit solvation in docking calculations



MM-GB/SA is a practical compromise between the higher accuracy of a Poisson-Boltzmann solver and a 
fast, efficient method to calculate solvation free energies.  Shoicket et al found that introducing 
solvation correction via MM-GB/SA improved enrichment in a screen against thymidylate synthase, the 
L99A mutant of T4 lysozyme and dihydrofolate reductase (DHFR)26.  Graves et al also employed 
MMGBSA as a rescoring metric to improve enrichment in docking calculations27. Taylor et al also 
employed MMGBSA in their validation of FDS28.  Lee and Sun29 used the GOLD 79 protein/ligand 
complex set to evaluate MMGBSA and found that 85% of the time the docked pose was within 2.0 A 
RMSD of the crystallographic structure.  Lyne et al30 is another study, this time studying kinase 
inhibitors, showing an improved correlation (r2>0.7) between relative binding data and MMGBSA scores.

The accuracy of MMGBSA re-scoring can sometimes even be useful for lead optimization31

3.3 Incorporating water explicit waters in virtual screening

There are two broad approaches to dealing with waters in virtual screening calculations.  One approach 
is to identify structural waters in the target protein structure and subsequently determine which 
water(s) to keep during the docking calculation.  That is, the goal is to determine which water(s) to keep 
a priori.  A second approach is to include or remove water molecules during the docking calculation.  A 
discussion of both approaches follows.

Methods to identify hydration sites in protein binding site vary from those based on conservation across 
protein families to computationally expensive free energy calculations based on physics alone.  Bottoms 
et al32 developed a method to identify conserved solvent sites.  Examination of 6 protein families yielded 
known and new solvent sites.  All families included solvent sites with than 90% conservation.  Other 
studies found conserved water molecules in T4 lysozyme33, aspartic proteinases34, Rossmann 
dinucleotide-binding domains35, serine proteases36, and legume lectins37.  Ehrlich et al38 employed a 
neural network to predict hydration sites based on protein sequence.  From the protein sequence two 
neural networks predicted secondary structure and solvent accessibility.  This information was used as 
input, in addition to sequence to a third neural network that predicted hydration sites with a success 
rate of 60-70%. Thus, highly conserved water molecules may be identified within a protein family.  

Other efforts are based on more physical metrics.  For example, Poornima and Dean39 argued that the 
shape of the protein surface affects how tightly water molecules will bind the protein.  Specifically, they 
proposed deep grooves and micro-grooves on the protein-site are best suited to tightly bind water 
molecules.    Goodford40 developed a program (GRID) to identify favorable interaction sites for probe 
molecules.  One of these probes is water.   Interactions were computed based on Lennard Jones, 
electrostatics and hydrogen bonding.  The Hydropathic Interactions (HINT) “natural” force field was 
developed to evaluate the contribution of water in protein-ligand interactions41. It employs a pairwise 
potential based on non-covalent interactions: electrostatic, acid-base, hydrophobic and hydrogen bonds 
and experimental values of logP (octanol/water partition) and can be used to evaluate ligand binding 



energies.  The advantage of this approach is that it provides more meaningful/intuitive, perhaps 
“natural”, interpretation of the results. A case study of waters in HIV-1 protease showed that including 
a key water molecule yielded a correlation coefficient ~ 0.6 with experimental binding data.  

Michael et al42 were able to accurately find the correct number and position of water sites in 5 binding 
sites using their “Just Add Water Molecules” (JAWS) procedure.    JAWS uses a double-decoupling 
approach to compare the removal of a water molecule from the bulk and from the binding site.   A 

unique feature of this method is the use of a scaling parameter that modulates intermolecular 

interactions for a given water molecule.   Each  is considered a degree of freedom in the monte-carlo 
calculation.  This approach can also yield the free energy of transferring a water molecule from its 
binding site cavity to bulk solvent.  However, the free energy calculations can suffer from poor 
convergence.  

Once hydration sites are known, it is key to determine which water molecules are displaceable.  
Approximate methods are able to identify displaceable waters given structural waters.  Consolv is based 
on a K-nearest neighbor genetic algorithm that takes as input B-factors, number of hydrogen bonds, 
hydrophilicity and atomic density.  After training on 13 proteins and 2334 first-shell waters, it yields 61% 
accuracy43 in indentifying structural waters.  The authors note that the microenvironment of the water is 
the key determinant of water affinity.  Amadasi et al44 report being able to identify “relevant” waters in 
86% of the cases examined using the HINT “natural” force field45.  Relevant waters were defined as 
those waters generally conserved but that may be displaced during the lead optimization stage.
Waterscore46 is a metric based on a multivariate analysis of B-factors, solvent contact surface area and
the number of protein atomic contacts (NPAC) that identifies structural waters displaced by ligands.  It 
yielded 67% accuracy using a 1.5 A threshold for identifying displaced waters.  These methods are 
amenable for initial docking calculations given that they do not require massive computations, such as in 
the case of free energy calculations, to yield an answer and have an acceptable success rates (67-86%).  

3.3 Displacing waters during docking calculations

Alternatively, it is possible to consider including/removing water molecules during the docking 
calculation.  Huang and Shoichet18 implemented this approach in DOCK 3.5.54 but did not include a 
penalty for displacing the water molecule.  Verndok et al47 assigned a penalty of ~ 2kJ/mol for the free 
energy penalty of displacing a water molecule in GOLD.  They observe an improvement in docking 
results by toggling in and out water molecules and using the 2kJ/mol penalty.  

AUTODOCK incorporates water molecules and receptor flexibility by combining several structures (and 
water arrangements) into a single grid48.  The key feature of this approach is that they use a “clamped” 
grid where they calculate a weighted average for the potential at a given grid point.  The weight for 
steric clashes (or van der Waals values that are large and positive) are assigned very low weights.  This 
approach drastically lowers the effect of steric clashes due to flexibility or crystallographic waters and 
permits the docking into a cavity occupied by water in some structures without causing a steric clash.  
SLIDE49 also addresses water molecules in docking but addresses it by sing consolv to predict which 



waters to keep.  Those waters can be displaced during the docking calculation but pay an energy penalty 
reflected in the ligand score.

FlexX50 employs a “particle” concept where it a priori determines hydration sites on the receptor 
surface.  “particles” at these sites are then turned on and off during the docking calculation.  The 
docking calculation involves building the ligand by adding small fragments until it is complete.  At each 
building stage, if the ligand clashes with a putative “particle” then the particle it is removed.  If not it is 
kept until the next iteration.  Using this scheme, the authors observed a nearly neglible effect on the 
pose RMS but also report an average rank improvement of 10.2 at a 2.0 A threshold.  That is, the 
enrichment improved which key at the virtual screening stage.
FITTED51-52 switches on/off water molecules using a scaling factor that goes from 0 to 1 depending on 
the distances between the ligand and the water molecule in question.  Their comparative study with 
other docking program shows a modest improvement in docked poses versus results obtained after 
removing all water molecules53.  

Glide incorporates water molecules in their docking to address solvation after ligands are docked.   
Water probes around the docked poses identify hydration sites.  Statistics about howmany hydrogen 
bonds exist to polar, and non-polar groups help pinpoint which polar groups are essentially disolvated 
and which waters are in hydrophobic cavities.  A penalty is applied if either of these two metrics  

Solvation in lead optimization

Water displacement at the lead optimization stage warrants more scrutiny given that compounds at this 
stage typically require in-house synthesis, may require an entirely new synthetic route and a whole 
series may be synthesized to explore optimal interactions.  Furthermore, there may be differences in 
water networks between the lead-protein complex the apo structure and it will be those weakly bound 
waters that will likely release the most free energy when displaced.  

Watermap54-56 is a protocol that uses inhomogeneous solvation theory to calculate the free energy cost 
of transferring a water molecule from a protein hydration site to bulk solvent.  The authors make a 
compelling case that displacing water molecules makes a significant contribution to ligand binding.  
Clustering analysis of water molecules around a protein in a molecular dynamics simulation yields the 
location of hydration sites.  An inhomogeneous solvation theory analysis yields the free energy of water 
molecules at each hydration site.  Given a ligand pose, a functional computes how much free energy is 
gained (or lost) by displacing the waters that occupied the ligand volume.  Abel et al55 report a high 
correlation with relative binding free energies for a series of factor Xa inhibitors (R2=0.81).  

Guimaraes et al57 went a step further and suggested watermap could help address limitations of MM-
GB/SA.  For their series of CKD2 and factor Xa inhibitors, they were able to observe a modest 
improvement in correlation with experiment when the two approaches were combined. R2 improved 
from 0.75 to 0.82 when a watermap correction was added to MMGBSA for the factor Xa series. In this 
pacticular implementation of MMGBSA rescoring the GB protein solvation change upon binding was 



removed.  A similar improvement was observed for the CDK2 series; R2 increased from 0.65 to 0.73. 
While the effect is modest, the authors point out that the methods should complement each other as 
they capture complementary aspects of binding.    

The most careful way to calculate the free energy cost of water displacement is via free energy 
calculations58-60.  Pan et al61 employed a grand canonical ensemble simulation to guide the design of 
inhibitors that displace a water molecule and inhibit HIV Tat and human PCAF association.  displacement 
of water by an inhibitor An example is the work by Yu and Rick where they calculated the binding affinity 
of water molecules in the DNA gyrase binding site via thermodynamic integration62.  This was an 
interesting case where a natural mutation introduces a water molecule into the ligand/protein interface 
that lowers the overall binding affinity by 2 kcal/mol. More recently Michel et al42 used a monte-carlo 
free energy perturbation calculate the net effect of displacing water molecules by optimizing a ligand 
molecule in the binding sites of p38a MAP kinase, EGFT kinase and scytalone dehydratase.  Their 
calculations highlight some of the sampling issues involved in free energy calculations such as hysteresis 
and, in a water in scytalone dehydratase, the trapping of water as a ligand modification “grows” into a 
water cavity.  The result was an overestimation of the relative binding free energy of the modified ligand 
and a realization that careful analysis is necessary for accurate results.  

Barilla et al63 performed monte carlo free energy perturbation calculations coupled with replica 
exchange64-65 to calculate the binding energy of 54 water molecules in HIV-1 protease, neuraminidase, 
trypsin and FxA  ligand/protein complexes.  Their data showed a statistically significant lower binding 
free energy for waters known to be displaced by ligands versus those not displaced (-6.2 kcal/mol vs -3.7 
kcal/mol).  

Other approaches for free energy calculations using water are to combine explicit and implicit solvent 
models.

In some cases  free energy calculations using implicit solvent (MMGBSA) can yield comparable results to 
explicit solvent calculations66.  

EXPERT OPINION

Alternatively, it is possible to imagine cases where it may be advantageous to introduce a water 
molecule to mediate a ligand/water contact.    

The effect of removing waters on enrichment will depend on the databased used.  (the decoys used) and 
how they fit in the “dry” binding site versus the fully solvated site.  In the end, however, this will matter!
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